The advancement of stereoregular polymerization techniques for linear 1,3-dienes has enabled the production of polymers with precise stereocontrol, influencing their physical and chemical properties significantly. While 1,3-butadiene and isoprene yield diverse stereoregular polymers, cyclic dienes have received less attention due to catalyst challenges and limited application in the rubber industry. However, the growing interest in bio-based monomers, particularly those derived from terpenes and terpenoids, has revitalized interest in cyclic monomers with conjugated double bonds. This study investigates 1-vinylcyclohexene (VCH) polymerization using [OSSO]-type titanium complexes 1-2, revealing significant regio- and stereoselectivity. Catalyst 2, incorporating cumyl substituents, demonstrates superior performance, yielding highly isotactic poly(VCH) with 3,4-insertion predominance. It is also shown that the polymerization of S-4-isopropenyl-1-vinyl-1-cyclohexene (IVC), a bio-based monomer, results in a highly isotactic polymer. Finally, the copolymerization results of IVC with two linear terpenes to obtain copolymers derived entirely from renewable sources are also reported.
Isoselective Polymerization of 1-Vinylcyclohexene (VCH) and a Terpene Derived Monomer S-4-Isopropenyl-1-vinyl-1-cyclohexene (IVC), and Its Binary Copolymerization with Linear Terpenes
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Grimaldi I.;D'Amato A.;Gambardella M. C.;Buonerba A.;Auriemma F.;Capacchione C.
	
		
		
	
			2024
Abstract
The advancement of stereoregular polymerization techniques for linear 1,3-dienes has enabled the production of polymers with precise stereocontrol, influencing their physical and chemical properties significantly. While 1,3-butadiene and isoprene yield diverse stereoregular polymers, cyclic dienes have received less attention due to catalyst challenges and limited application in the rubber industry. However, the growing interest in bio-based monomers, particularly those derived from terpenes and terpenoids, has revitalized interest in cyclic monomers with conjugated double bonds. This study investigates 1-vinylcyclohexene (VCH) polymerization using [OSSO]-type titanium complexes 1-2, revealing significant regio- and stereoselectivity. Catalyst 2, incorporating cumyl substituents, demonstrates superior performance, yielding highly isotactic poly(VCH) with 3,4-insertion predominance. It is also shown that the polymerization of S-4-isopropenyl-1-vinyl-1-cyclohexene (IVC), a bio-based monomer, results in a highly isotactic polymer. Finally, the copolymerization results of IVC with two linear terpenes to obtain copolymers derived entirely from renewable sources are also reported.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Macromolecular Rapid Communications - 2024 - Grimaldi - Isoselective Polymerization of 1‐Vinylcyclohexene  VCH  and a.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Versione editoriale (versione pubblicata con il layout dell'editore)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.28 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.28 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


