In this study, we present an innovative methodology for the identification of giant aerosols using cloud radar. The methodology makes use of several insects studies in order to separate radar-derived atmospheric plankton signatures into the contributions of insects and giant aerosols. The methodology is then applied to a 6-year-long cloud radar dataset in Potenza, South Italy. Forty giant aerosol events per year were found, which is in good agreement with the site’s climatological record. A sensitivity study on the effects of the giant aerosols on three atmospheric variables and under different atmospheric stability conditions showed that the presence of giant aerosols (a) increased the aerosol optical depth in all the atmospheric stability conditions, (b) decreased the Ångström exponent for the highest and lowest stability conditions and had the opposite effect for the intermediate stability condition, and (c) increased the accumulated precipitation in all the atmospheric conditions, especially in the most unstable ones.
Giant Aerosol Observations with Cloud Radar: Methodology and Effects
Madonna, FabioConceptualization
;
2025
Abstract
In this study, we present an innovative methodology for the identification of giant aerosols using cloud radar. The methodology makes use of several insects studies in order to separate radar-derived atmospheric plankton signatures into the contributions of insects and giant aerosols. The methodology is then applied to a 6-year-long cloud radar dataset in Potenza, South Italy. Forty giant aerosol events per year were found, which is in good agreement with the site’s climatological record. A sensitivity study on the effects of the giant aerosols on three atmospheric variables and under different atmospheric stability conditions showed that the presence of giant aerosols (a) increased the aerosol optical depth in all the atmospheric stability conditions, (b) decreased the Ångström exponent for the highest and lowest stability conditions and had the opposite effect for the intermediate stability condition, and (c) increased the accumulated precipitation in all the atmospheric conditions, especially in the most unstable ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.