The use of lightweight components in automobiles started a new chapter in the automotive sector due to the renewable energy and sustainability increasing the overall efficiency of vehicles. As vehicle weight is directly linked to energy consumption, reducing mass through advanced materials can significantly decrease energy usage and emissions over the vehicle’s lifetime. This present study aims to conduct a preliminary life cycle assessment (LCA) of a prototype battery pack manufactured using pultruded composite materials with a volume fraction of 50% glass fibers and a volume fraction of 50% nylon 6 (PA6) matrix by quantifying the CO2 emissions and cumulative energy demand (CED) associated with each stage of the battery pack’s life cycle, encompassing production, usage, and end-of-life recycling. The results of the EuCia Eco Impact Calculator and from the literature reveal that the raw materials extraction and use phases are the most energy-intensive and contribute mainly to the environmental footprint of the battery pack. For a single battery pack for EV, the CED is 13,629.9 MJ, and the CO2 eq emissions during production are 1323.9 kg. These results highlight the need for innovations in material sourcing and design strategies to mitigate these impacts. Moreover, the variations in recycling methods were assessed using a sensitivity analysis to understand how they affect the overall environmental impact of the system. Specifically, shifting from mechanical recycling to pyrolysis results in an increase of 4% to 19% of the total CO2 emissions (kg CO2). Future goals include building a laboratory-scale model based on the prototype described in this paper to compare the environmental impacts considering equal mechanical properties with alternatives currently used in the automotive industry, such as aluminum and steel alloys.

Life Cycle Assessment of a Composite Prototype Battery Enclosure for Electric Vehicles

De Sio, Paolo;Esperto, Vitantonio;Astarita, Antonello;Tucci, Fausto
2025

Abstract

The use of lightweight components in automobiles started a new chapter in the automotive sector due to the renewable energy and sustainability increasing the overall efficiency of vehicles. As vehicle weight is directly linked to energy consumption, reducing mass through advanced materials can significantly decrease energy usage and emissions over the vehicle’s lifetime. This present study aims to conduct a preliminary life cycle assessment (LCA) of a prototype battery pack manufactured using pultruded composite materials with a volume fraction of 50% glass fibers and a volume fraction of 50% nylon 6 (PA6) matrix by quantifying the CO2 emissions and cumulative energy demand (CED) associated with each stage of the battery pack’s life cycle, encompassing production, usage, and end-of-life recycling. The results of the EuCia Eco Impact Calculator and from the literature reveal that the raw materials extraction and use phases are the most energy-intensive and contribute mainly to the environmental footprint of the battery pack. For a single battery pack for EV, the CED is 13,629.9 MJ, and the CO2 eq emissions during production are 1323.9 kg. These results highlight the need for innovations in material sourcing and design strategies to mitigate these impacts. Moreover, the variations in recycling methods were assessed using a sensitivity analysis to understand how they affect the overall environmental impact of the system. Specifically, shifting from mechanical recycling to pyrolysis results in an increase of 4% to 19% of the total CO2 emissions (kg CO2). Future goals include building a laboratory-scale model based on the prototype described in this paper to compare the environmental impacts considering equal mechanical properties with alternatives currently used in the automotive industry, such as aluminum and steel alloys.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4907136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact