We present a numerical procedure to improve the performance of the classical Reynolds-Averaged Navier-Stokes approach for transitional flows by introducing a transition prediction tool in the RANS code. A black-box procedure able to estimate first the boundary layer quantities (starting from the pressure distribution) and then to compute the linear evolution of the fluctuations has been included in an existing RANS code. Thanks to the coupling to the eN method, the transition location is predicted and periodically imposed during the RANS computations. The approach proposed in this paper to predict the transition location and the laminar flow extension is based on a numerical framework based on the coupling between a high-fidelity, Reynolds–Averaged Navier–Stokes (RANS) tool and Linear Stability Equations. According to this method, boundary layer equations are written in conical formulation and the solution of RANS equations and transition onset is obtained through an eN method based on the PSE calculations. The validation of the present approach has been achieved by comparing the numerical results against the experimental data documented in the ETRIOLLA project.

An accurate RANS-based transition prediction approach (part I)

Russo, S;Citro, V;Giannetti, F
2022

Abstract

We present a numerical procedure to improve the performance of the classical Reynolds-Averaged Navier-Stokes approach for transitional flows by introducing a transition prediction tool in the RANS code. A black-box procedure able to estimate first the boundary layer quantities (starting from the pressure distribution) and then to compute the linear evolution of the fluctuations has been included in an existing RANS code. Thanks to the coupling to the eN method, the transition location is predicted and periodically imposed during the RANS computations. The approach proposed in this paper to predict the transition location and the laminar flow extension is based on a numerical framework based on the coupling between a high-fidelity, Reynolds–Averaged Navier–Stokes (RANS) tool and Linear Stability Equations. According to this method, boundary layer equations are written in conical formulation and the solution of RANS equations and transition onset is obtained through an eN method based on the PSE calculations. The validation of the present approach has been achieved by comparing the numerical results against the experimental data documented in the ETRIOLLA project.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4909338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact