We establish partial Hölder continuity of the gradient for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p-growth, 1 < p < 2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand Φ not necessarily regular.

Quasiconvex bulk and surface energies with subquadratic growth

Esposito, Luca
;
Lamberti, Lorenzo
2025

Abstract

We establish partial Hölder continuity of the gradient for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with p-growth, 1 < p < 2, without any further structure conditions. The anisotropic surface energy is defined by means of an elliptic integrand Φ not necessarily regular.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4910917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact