This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru.

Improving Sustainable Viticulture in Developing Countries: A Case Study

Rivera Chavez, Zandra Betzabe
Conceptualization
;
De Simone, Marco Claudio
Investigation
;
Guida, Domenico
Supervision
2025

Abstract

This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4912496
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact