The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with pyrene chains were successfully synthesized to improve the compatibility with carbonaceous fillers. The compatibility was proven using graphite as a carbonaceous filler. The different properties, including thermal stability, crystallinity, morphology, and local mechanical properties, have been evaluated for various filler contents, and the results have been compared to those of synthetic Nylon 6,6 without pyrene chain terminals. XRD results highlighted that the compatibilization of the composite matrix may lead to an intercalation of the polymeric chains among the graphite layers. This phenomenon leads to the protection of the polymer from thermal degradation, as highlighted by the thermogravimetric analysis (i.e., for a filler content of 20%, the beginning degradation temperature goes from 357 degrees C for the non-compatibilized matrix to 401 degrees C for the compatibilized one and the residual at 750 degrees C goes from 33% to 67%, respectively. A significant improvement in the interphase properties, as proven via Atomic Force Microscopy in Harmonix mode, leads to a considerable increase in local mechanical modulus values. Specifically, the compatibilization of the matrix hosting the graphite leads to a less pronounced difference in modulus values, with more frequent reinforcements that are quantitatively similar along the sample surface. This results from a significantly improved filler distribution with respect to the composite with the non-compatibilized matrix. The present study shows how the thermoplastic/filler compatibilization can sensitively enhance thermal and mechanical properties of the thermoplastic composite, widening its potential use for various high-performance applications, such as in the transport field, e.g., for automotive components (engine parts, gears, bushings, washers), and electrical and electronics applications (heat sinks, casing for electronic devices, and insulating materials).

Synthesis of Nylon 6,6 with Pyrene Chain-End for Compatibilization with Graphite and Enhancement of Thermal and Mechanical Properties

Balzano V.;Mariconda A.;Acocella M. R.;Raimondo M.;D'Amato A.;Longo P.;Guadagno L.;Longo R.
2025

Abstract

The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with pyrene chains were successfully synthesized to improve the compatibility with carbonaceous fillers. The compatibility was proven using graphite as a carbonaceous filler. The different properties, including thermal stability, crystallinity, morphology, and local mechanical properties, have been evaluated for various filler contents, and the results have been compared to those of synthetic Nylon 6,6 without pyrene chain terminals. XRD results highlighted that the compatibilization of the composite matrix may lead to an intercalation of the polymeric chains among the graphite layers. This phenomenon leads to the protection of the polymer from thermal degradation, as highlighted by the thermogravimetric analysis (i.e., for a filler content of 20%, the beginning degradation temperature goes from 357 degrees C for the non-compatibilized matrix to 401 degrees C for the compatibilized one and the residual at 750 degrees C goes from 33% to 67%, respectively. A significant improvement in the interphase properties, as proven via Atomic Force Microscopy in Harmonix mode, leads to a considerable increase in local mechanical modulus values. Specifically, the compatibilization of the matrix hosting the graphite leads to a less pronounced difference in modulus values, with more frequent reinforcements that are quantitatively similar along the sample surface. This results from a significantly improved filler distribution with respect to the composite with the non-compatibilized matrix. The present study shows how the thermoplastic/filler compatibilization can sensitively enhance thermal and mechanical properties of the thermoplastic composite, widening its potential use for various high-performance applications, such as in the transport field, e.g., for automotive components (engine parts, gears, bushings, washers), and electrical and electronics applications (heat sinks, casing for electronic devices, and insulating materials).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4913817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact