The work provides early results obtained with a multichannel EIS system, which were used to identify an equivalent circuit of an Industrial Scale Vanadium Redox Flow Battery (IS-VRFB) stack with a rated power/energy of 9 kW/27 kWh. The single cell impedance is represented with three different models, including a series resistance and an RC loop (RRC model), or a constant phase element (CPE) loop (a ZARC element), or a ZARC element including also a Warburg impedance. The inclusion of the CPE constitutes a substantial improvement in the fit. Conversely, the addition of the Warburg element, which aims to model the mass transfer in the electrochemical process, does not produce significant effects for the frequencies at which we have experimental data. This numerical results are validated against EIS measurements taken on IS-VRFB. Very few analyses of this type are reported in the literature for such batteries. This study set the stage for developing advanced online State of Health (SOH) management for IS-VRFB.

Impedance Modeling for Multichannel EIS in Industrial Scale Vanadium Redox Flow Batteries

Zamboni, Walter;
2023

Abstract

The work provides early results obtained with a multichannel EIS system, which were used to identify an equivalent circuit of an Industrial Scale Vanadium Redox Flow Battery (IS-VRFB) stack with a rated power/energy of 9 kW/27 kWh. The single cell impedance is represented with three different models, including a series resistance and an RC loop (RRC model), or a constant phase element (CPE) loop (a ZARC element), or a ZARC element including also a Warburg impedance. The inclusion of the CPE constitutes a substantial improvement in the fit. Conversely, the addition of the Warburg element, which aims to model the mass transfer in the electrochemical process, does not produce significant effects for the frequencies at which we have experimental data. This numerical results are validated against EIS measurements taken on IS-VRFB. Very few analyses of this type are reported in the literature for such batteries. This study set the stage for developing advanced online State of Health (SOH) management for IS-VRFB.
2023
9783031248368
9783031248375
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4916616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact