: In this work, we propose a novel quantum-informed epistemic framework that extends the classical notion of probability by integrating plausibility, credibility, and possibility as distinct yet complementary measures of uncertainty. This enriched quadruple (P, Pl, Cr, Ps) enables a deeper characterization of quantum systems and decision-making processes under partial, noisy, or ambiguous information. Our formalism generalizes the Born rule within a multi-valued logic structure, linking Positive Operator-Valued Measures (POVMs) with data-driven plausibility estimators, agent-based credibility priors, and fuzzy-theoretic possibility functions. We develop a hybrid classical-quantum inference engine that computes a vectorial aggregation of the quadruples, enhancing robustness and semantic expressivity in contexts where classical probability fails to capture non-Kolmogorovian phenomena such as entanglement, contextuality, or decoherence. The approach is validated through three real-world application domains-quantum cybersecurity, quantum AI, and financial computing-where the proposed model outperforms standard probabilistic reasoning in terms of accuracy, resilience to noise, interpretability, and decision stability. Comparative analysis against QBism, Dempster-Shafer, and fuzzy quantum logic further demonstrates the uniqueness of architecture in both operational semantics and practical outcomes. This contribution lays the groundwork for a new theory of epistemic quantum computing capable of modelling and acting under uncertainty beyond traditional paradigms.
An Extended Epistemic Framework Beyond Probability for Quantum Information Processing with Applications in Security, Artificial Intelligence, and Financial Computing
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Iovane, Gerardo
			2025
Abstract
: In this work, we propose a novel quantum-informed epistemic framework that extends the classical notion of probability by integrating plausibility, credibility, and possibility as distinct yet complementary measures of uncertainty. This enriched quadruple (P, Pl, Cr, Ps) enables a deeper characterization of quantum systems and decision-making processes under partial, noisy, or ambiguous information. Our formalism generalizes the Born rule within a multi-valued logic structure, linking Positive Operator-Valued Measures (POVMs) with data-driven plausibility estimators, agent-based credibility priors, and fuzzy-theoretic possibility functions. We develop a hybrid classical-quantum inference engine that computes a vectorial aggregation of the quadruples, enhancing robustness and semantic expressivity in contexts where classical probability fails to capture non-Kolmogorovian phenomena such as entanglement, contextuality, or decoherence. The approach is validated through three real-world application domains-quantum cybersecurity, quantum AI, and financial computing-where the proposed model outperforms standard probabilistic reasoning in terms of accuracy, resilience to noise, interpretability, and decision stability. Comparative analysis against QBism, Dempster-Shafer, and fuzzy quantum logic further demonstrates the uniqueness of architecture in both operational semantics and practical outcomes. This contribution lays the groundwork for a new theory of epistemic quantum computing capable of modelling and acting under uncertainty beyond traditional paradigms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


