Diabetes mellitus (DM) is a global health issue of significance that must be diagnosed as early as possible and managed well. This study presents a framework for diabetes prediction using Machine Learning (ML) models, complemented with eXplainable Artificial Intelligence (XAI) tools, to investigate both the predictive accuracy and interpretability of the predictions from ML models. Data Preprocessing is based on the Synthetic Minority Oversampling Technique (SMOTE) and feature scaling used on the Diabetes Binary Health Indicators dataset to deal with class imbalance and variability of clinical features. The ensemble model provided high accuracy, with a test accuracy of 92.50% and an ROC-AUC of 0.975. BMI, Age, General Health, Income, and Physical Activity were the most influential predictors obtained from the model explanations. The results of this study suggest that ML combined with XAI is a promising means of developing accurate and computationally transparent tools for use in healthcare systems.

Towards Reliable and Transparent Diabetes Diagnosis with an Explainable Ensemble Framework for Clinical Decision Support

Pir Bakhsh Khokhar
Software
;
Viviana Pentangelo
Conceptualization
;
Fabio Palomba
Formal Analysis
;
Carmine Gravino
Supervision
2025

Abstract

Diabetes mellitus (DM) is a global health issue of significance that must be diagnosed as early as possible and managed well. This study presents a framework for diabetes prediction using Machine Learning (ML) models, complemented with eXplainable Artificial Intelligence (XAI) tools, to investigate both the predictive accuracy and interpretability of the predictions from ML models. Data Preprocessing is based on the Synthetic Minority Oversampling Technique (SMOTE) and feature scaling used on the Diabetes Binary Health Indicators dataset to deal with class imbalance and variability of clinical features. The ensemble model provided high accuracy, with a test accuracy of 92.50% and an ROC-AUC of 0.975. BMI, Age, General Health, Income, and Physical Activity were the most influential predictors obtained from the model explanations. The results of this study suggest that ML combined with XAI is a promising means of developing accurate and computationally transparent tools for use in healthcare systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4919825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact