Hydrogen-based technologies are growing, thanks to recent advancements in systems such as fuel cells and electrolyzers. The present work aims to develop a methodology for the definition of a fused health indicator to monitor the operating and health conditions of a solid oxide fuel cell system. A suitable degradation model was built to yield four trendable output indicators, which were subsequently merged to create the fused health indicator. Subsequently, the assessment of off-design conditions and two realistic scenarios (leakage and constant excess of air working regime) was carried out. The health indicator has proved suitable for fault detection, prognostic applications, control strategy improvement, and health management. In particular, the methodology has underlined the necessity of making the control strategy adaptive with respect to degradation. Through this approach, it is observed that reducing the solid oxide fuel cell temperature difference by 10 °C can result in a 1.2% increase in lifetime. In contrast, the leakage simulation reveals a decrease of about 10.5% in the health state after 100 h, resulting in about a 21% lower end-of-life.

The Development of a Model-Based Methodology to Implement a Fused Health Indicator for a Solid Oxide Fuel Cell

Ambrosino A.;Bove G.;Sorrentino M.;Postiglione F.
2025

Abstract

Hydrogen-based technologies are growing, thanks to recent advancements in systems such as fuel cells and electrolyzers. The present work aims to develop a methodology for the definition of a fused health indicator to monitor the operating and health conditions of a solid oxide fuel cell system. A suitable degradation model was built to yield four trendable output indicators, which were subsequently merged to create the fused health indicator. Subsequently, the assessment of off-design conditions and two realistic scenarios (leakage and constant excess of air working regime) was carried out. The health indicator has proved suitable for fault detection, prognostic applications, control strategy improvement, and health management. In particular, the methodology has underlined the necessity of making the control strategy adaptive with respect to degradation. Through this approach, it is observed that reducing the solid oxide fuel cell temperature difference by 10 °C can result in a 1.2% increase in lifetime. In contrast, the leakage simulation reveals a decrease of about 10.5% in the health state after 100 h, resulting in about a 21% lower end-of-life.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4920417
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact