Extracellular vesicles (EVs) are nanometer-sized lipid structures actively secreted by Gram-negative and Gram-positive bacteria, representing a sophisticated microbial adaptation and communication strategy. These structures are involved in biomolecular transport, the regulation of biological processes, the modulation of host-pathogen interactions, and adaptation to hostile environmental conditions. EVs also play a crucial role in virulence, antibiotic resistance, and biofilm formation. This review will explore the biogenesis, composition, and biological mechanisms of outer membrane vesicles (OMVs) secreted by Gram-negative bacteria and membrane vesicles (MVs) generated by Gram-positive bacteria. In detail, the modulation of EVs in response to antibiotic exposure will be addressed. The role of EV morpho-functional adaptations will be studied in antimicrobial resistance, the gene determinant spread, and survival in adverse environments. This study aims to provide a comprehensive overview of the EV role in bacterial physiology, highlighting their ecological, evolutionary, and biotechnological implications. An overview of the enzymes and proteins mainly involved in OMV-mediated resistance mechanisms will also be provided. These insights could open new perspectives for developing therapeutic strategies that counteract EV secretion and biotechnological applications, such as vaccines and drug delivery systems.

Adaptations of Bacterial Extracellular Vesicles in Response to Antibiotic Pressure

Dell'Annunziata Federica;Cosimato Ilaria;Salzano Flora;Mensitieri Francesca;Andretta Vincenzo;Boccia Giovanni;Folliero Veronica;Franci Gianluigi
2025

Abstract

Extracellular vesicles (EVs) are nanometer-sized lipid structures actively secreted by Gram-negative and Gram-positive bacteria, representing a sophisticated microbial adaptation and communication strategy. These structures are involved in biomolecular transport, the regulation of biological processes, the modulation of host-pathogen interactions, and adaptation to hostile environmental conditions. EVs also play a crucial role in virulence, antibiotic resistance, and biofilm formation. This review will explore the biogenesis, composition, and biological mechanisms of outer membrane vesicles (OMVs) secreted by Gram-negative bacteria and membrane vesicles (MVs) generated by Gram-positive bacteria. In detail, the modulation of EVs in response to antibiotic exposure will be addressed. The role of EV morpho-functional adaptations will be studied in antimicrobial resistance, the gene determinant spread, and survival in adverse environments. This study aims to provide a comprehensive overview of the EV role in bacterial physiology, highlighting their ecological, evolutionary, and biotechnological implications. An overview of the enzymes and proteins mainly involved in OMV-mediated resistance mechanisms will also be provided. These insights could open new perspectives for developing therapeutic strategies that counteract EV secretion and biotechnological applications, such as vaccines and drug delivery systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4921297
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact