In recent years, the management of bone defects in regenerative medicine and orthopedic surgery has been the subject of extensive research efforts. The complexity of fractures and bone loss arising from trauma, degenerative conditions, or congenital disorders necessitates innovative therapeutic strategies to promote effective healing. Although bone tissue exhibits an intrinsic regenerative capacity, extensive fractures and critical-sized defects can severely compromise this process, often requiring bone grafts or substitutes. Tissue engineering approaches within regenerative medicine have introduced novel possibilities for addressing nonunions and challenging bone defects refractory to conventional treatment methods. Key components in this field include stem cells, bioactive growth factors, and biocompatible scaffolds, with a strong focus on advancements in bone substitute materials. Both natural and synthetic substitutes present distinct characteristics and applications. Natural grafts—comprising autologous, allogeneic, and xenogeneic materials—offer biological advantages, while synthetic alternatives, including biodegradable and non-biodegradable biomaterials, provide structural versatility and reduced immunogenicity. This review provides a comprehensive analysis of the diverse bone grafting alternatives utilized in orthopedic surgery, emphasizing recent advancements and persistent challenges. By exploring both natural and synthetic bone substitutes, this work offers an in-depth examination of cutting-edge solutions, fostering further research and innovation in the treatment of complex bone defects.
Bone Defect Treatment in Regenerative Medicine: Exploring Natural and Synthetic Bone Substitutes
Santoro, Angelo;Fortino, Luigi;D'Ursi, Anna Maria
2025
Abstract
In recent years, the management of bone defects in regenerative medicine and orthopedic surgery has been the subject of extensive research efforts. The complexity of fractures and bone loss arising from trauma, degenerative conditions, or congenital disorders necessitates innovative therapeutic strategies to promote effective healing. Although bone tissue exhibits an intrinsic regenerative capacity, extensive fractures and critical-sized defects can severely compromise this process, often requiring bone grafts or substitutes. Tissue engineering approaches within regenerative medicine have introduced novel possibilities for addressing nonunions and challenging bone defects refractory to conventional treatment methods. Key components in this field include stem cells, bioactive growth factors, and biocompatible scaffolds, with a strong focus on advancements in bone substitute materials. Both natural and synthetic substitutes present distinct characteristics and applications. Natural grafts—comprising autologous, allogeneic, and xenogeneic materials—offer biological advantages, while synthetic alternatives, including biodegradable and non-biodegradable biomaterials, provide structural versatility and reduced immunogenicity. This review provides a comprehensive analysis of the diverse bone grafting alternatives utilized in orthopedic surgery, emphasizing recent advancements and persistent challenges. By exploring both natural and synthetic bone substitutes, this work offers an in-depth examination of cutting-edge solutions, fostering further research and innovation in the treatment of complex bone defects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


