The the problem of inferring the jump probabilities of a discrete Ran- dom Walk from the probability distribution of the process out equilibrium is addressed. Numerical methods and algorithms for solving this problem in 1 and 2 dimensions, based on the Chapman-Kolmogorov equation are investigated. The quantification of the a posteriori error of the calcu- lated value is performed. Numerical experiments show the ability of the proposed computational procedure to infer the Random Walk parameters and the related accuracies.

Using the Chapman-Kolmogorov equation for the inference of discrete Random Walks

Mario Annunziato
Writing – Original Draft Preparation
In corso di stampa

Abstract

The the problem of inferring the jump probabilities of a discrete Ran- dom Walk from the probability distribution of the process out equilibrium is addressed. Numerical methods and algorithms for solving this problem in 1 and 2 dimensions, based on the Chapman-Kolmogorov equation are investigated. The quantification of the a posteriori error of the calcu- lated value is performed. Numerical experiments show the ability of the proposed computational procedure to infer the Random Walk parameters and the related accuracies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4927879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact