Viable cells of Kluyveromyces lactis, transformed with the glucoamylase gene from Arxula adeninivorans, were entrapped in beads of Ca-alginate and employed on a lab scale in a continuous stirred and a fluidized bed reactor, both fed with a rich medium (YEP) containing lactose as carbon source. Experiments with freely suspended cells in batch and chemostat had demonstrated that glucoamylase production was favoured in the presence of lactose and YEP medium. Employing controlled-sized beads having a 2.13 mm diameter, specific glucoamylase productivity was higher in the stirred reactor (CSTR) than in the fluidized bed reactor (FBR); in the latter a higher volumetric productivity was achieved, due to the lower void degree. The performance of the immobilised cell systems, in terms of specific glucoamylase productivity, was strongly affected by mass transfer limitations occurring throughout the gel due to the high molecular weight of the product. In the perspective to improve and scale-up the immobilized cell system proposed, a mathematical model, which takes into account substrate transfer limitations throughout the gel, has been developed. The effective lactose diffusivity was related to the bead reactive efficiency by means of the Thiele modulus. The regression of the model parameters on the experimental data of substrate consumption obtained both in the CSTR and in the FBR allowed to estimate lactose diffusivity and the kinetic parameters of the immobilized yeast.

Kluyveromyces lactis entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase

POLETTO, Massimo;ROMANO, Vittorio Raffaele A.;PARASCANDOLA, Palma
2004

Abstract

Viable cells of Kluyveromyces lactis, transformed with the glucoamylase gene from Arxula adeninivorans, were entrapped in beads of Ca-alginate and employed on a lab scale in a continuous stirred and a fluidized bed reactor, both fed with a rich medium (YEP) containing lactose as carbon source. Experiments with freely suspended cells in batch and chemostat had demonstrated that glucoamylase production was favoured in the presence of lactose and YEP medium. Employing controlled-sized beads having a 2.13 mm diameter, specific glucoamylase productivity was higher in the stirred reactor (CSTR) than in the fluidized bed reactor (FBR); in the latter a higher volumetric productivity was achieved, due to the lower void degree. The performance of the immobilised cell systems, in terms of specific glucoamylase productivity, was strongly affected by mass transfer limitations occurring throughout the gel due to the high molecular weight of the product. In the perspective to improve and scale-up the immobilized cell system proposed, a mathematical model, which takes into account substrate transfer limitations throughout the gel, has been developed. The effective lactose diffusivity was related to the bead reactive efficiency by means of the Thiele modulus. The regression of the model parameters on the experimental data of substrate consumption obtained both in the CSTR and in the FBR allowed to estimate lactose diffusivity and the kinetic parameters of the immobilized yeast.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1058604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact