In this paper we analyse the performances of a novel approach to modelling non-linear conditional heteroscedastic time series characterised by asymmetries in both the conditional mean and variance. This is achieved by combining a TAR model for the conditional mean with a Changing Parameters Volatility (CPV) model for the conditional variance. Empirical results are given for the daily returns of the S&P 500, NASDAQ composite and FTSE 100 stock market indexes.

A Non-linear time series approach to modelling Asymmetry in Stock market Indexes

AMENDOLA, Alessandra;STORTI, Giuseppe
2002

Abstract

In this paper we analyse the performances of a novel approach to modelling non-linear conditional heteroscedastic time series characterised by asymmetries in both the conditional mean and variance. This is achieved by combining a TAR model for the conditional mean with a Changing Parameters Volatility (CPV) model for the conditional variance. Empirical results are given for the daily returns of the S&P 500, NASDAQ composite and FTSE 100 stock market indexes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1063196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact