Silica gel column chromatography, followed by HPLC purification on the apolar fraction of the methanol extract of marine sponge Theonella swinhoei, resulted in the isolation of a library of 10 polyhydroxylated steroids which we named theonellasterols B-H (1-7) and conicasterols B-D (8-10). The structures were determined on the basis of extensive spectroscopic data (MS, 1H and 13C NMR, COSY, HSQC, HMBC, and ROESY) analysis, and the putative binding mode to nuclear receptors (NRs) has been obtained through docking calculations. Pharmacological and structure-activity relationship analysis demonstrate that these natural polyhydroxylated steroids are potent ligands of human nuclear pregnane receptor (PXR) and modulator of farnesoid-X-receptor (FXR). In addition, the molecular characterization of theonellasterol G allowed the identification of the first FXR modulator and PXR ligand so far identified. Exposure of liver cells to this agent resulted in potent induction of PXR-regulated genes and modulation of FXR-regulated genes, highlighting its pharmacological potential in the treatment of liver disorders.

Theonellasterols and Conicasterols from Theonella swinhoei. Novel Marine Natural Ligands for Human Nuclear Receptors

CHINI, MARIA GIOVANNA;BIFULCO, Giuseppe;
2011-01-01

Abstract

Silica gel column chromatography, followed by HPLC purification on the apolar fraction of the methanol extract of marine sponge Theonella swinhoei, resulted in the isolation of a library of 10 polyhydroxylated steroids which we named theonellasterols B-H (1-7) and conicasterols B-D (8-10). The structures were determined on the basis of extensive spectroscopic data (MS, 1H and 13C NMR, COSY, HSQC, HMBC, and ROESY) analysis, and the putative binding mode to nuclear receptors (NRs) has been obtained through docking calculations. Pharmacological and structure-activity relationship analysis demonstrate that these natural polyhydroxylated steroids are potent ligands of human nuclear pregnane receptor (PXR) and modulator of farnesoid-X-receptor (FXR). In addition, the molecular characterization of theonellasterol G allowed the identification of the first FXR modulator and PXR ligand so far identified. Exposure of liver cells to this agent resulted in potent induction of PXR-regulated genes and modulation of FXR-regulated genes, highlighting its pharmacological potential in the treatment of liver disorders.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3026829
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 63
social impact