The self-similarity properties of fractals are studied in the framework of the theory of entire analytical functions and the q-deformed algebra of coherent states. Self-similar structures are related to dissipation and to noncommutative geometry in the plane. The examples of the Koch curve and logarithmic spiral are considered in detail. It is suggested that the dynamical formation of fractals originates from the coherent boson condensation induced by the generators of the squeezed coherent states, whose (fractal) geometrical properties thus become manifest. The macroscopic nature of fractals appears to emerge from microscopic coherent local deformation processes.

Fractals, coherent states and self-similarity induced noncommutative geometry

VITIELLO, Giuseppe
2012-01-01

Abstract

The self-similarity properties of fractals are studied in the framework of the theory of entire analytical functions and the q-deformed algebra of coherent states. Self-similar structures are related to dissipation and to noncommutative geometry in the plane. The examples of the Koch curve and logarithmic spiral are considered in detail. It is suggested that the dynamical formation of fractals originates from the coherent boson condensation induced by the generators of the squeezed coherent states, whose (fractal) geometrical properties thus become manifest. The macroscopic nature of fractals appears to emerge from microscopic coherent local deformation processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3891374
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
social impact