A probe-compensated near-field - far-field (NF-FF) transformation with spherical spiral scanning, which makes possible to lower the number of needed measurements, as well as the time required for the data acquisition when characterizing quasi-planar antennas, is experimentally verified in this paper. Such a technique, based on the nonredundant representation of electromagnetic fields, has been achieved by properly applying the unified theory of spiral scans for nonspherical antennas and adopting a very flexible source modelling, formed by two circular "bowls" with the same aperture diameter but different bending radii. A two-dimensional optimal sampling interpolation formula allows one to reconstruct the NF data at any point on the measurement sphere and, in particular, at those required by the classical NF-FF transformation with spherical scanning. The reported NF and FF reconstructions, obtained from the nonredundant samples acquired on the spiral, assess the accuracy of the proposed technique.

Far-field reconstruction from near-field data acquired via a fast spherical spiral scan: experimental evidences

D'AGOSTINO, Francesco;FERRARA, Flaminio;GENNARELLI, Claudio;GUERRIERO, ROCCO;MIGLIOZZI, MASSIMO
2013-01-01

Abstract

A probe-compensated near-field - far-field (NF-FF) transformation with spherical spiral scanning, which makes possible to lower the number of needed measurements, as well as the time required for the data acquisition when characterizing quasi-planar antennas, is experimentally verified in this paper. Such a technique, based on the nonredundant representation of electromagnetic fields, has been achieved by properly applying the unified theory of spiral scans for nonspherical antennas and adopting a very flexible source modelling, formed by two circular "bowls" with the same aperture diameter but different bending radii. A two-dimensional optimal sampling interpolation formula allows one to reconstruct the NF data at any point on the measurement sphere and, in particular, at those required by the classical NF-FF transformation with spherical scanning. The reported NF and FF reconstructions, obtained from the nonredundant samples acquired on the spiral, assess the accuracy of the proposed technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3996852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact