Matrix metalloproteinases (MMP) are involved in the development of tendinopathy. These potent enzymes completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediate the development of painful tendinopathy. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP). These latter bind to the enzyme and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances in tendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models.

Metalloproteases and tendinopathy.

Oliva F;MAFFULLI, Nicola
2013

Abstract

Matrix metalloproteinases (MMP) are involved in the development of tendinopathy. These potent enzymes completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediate the development of painful tendinopathy. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP). These latter bind to the enzyme and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances in tendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4095464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? ND
social impact