A wireless network consists of a large number of devices, deployed over a geographical area, and of a base station where data sensed by the devices are collected and accessed by the end users. In this paper we study algorithmic and complexity issues originating from the problem of data gathering in wireless networks. We give an algorithm to construct minimum makespan transmission schedules for data gathering under the following hypotheses: the communication graph G is a tree network, the transmissions in the network can interfere with each other up to distance m, where m≥2, and no buffering is allowed at intermediate nodes. In the interesting case in which all nodes in the network have to deliver an arbitrary non-zero number of packets, we provide a closed formula for the makespan of the optimal gathering schedule. Additionally, we consider the problem of determining the computational complexity of data gathering in general graphs and show that the problem is NP-complete. On the positive side, we design a simple (1+2/m)-factor approximation algorithm for general networks.

Optimal Time Data Gathering in Wireless Networks with Multidirectional Antennas

GARGANO, Luisa;RESCIGNO, Adele Anna;VACCARO, Ugo
2013

Abstract

A wireless network consists of a large number of devices, deployed over a geographical area, and of a base station where data sensed by the devices are collected and accessed by the end users. In this paper we study algorithmic and complexity issues originating from the problem of data gathering in wireless networks. We give an algorithm to construct minimum makespan transmission schedules for data gathering under the following hypotheses: the communication graph G is a tree network, the transmissions in the network can interfere with each other up to distance m, where m≥2, and no buffering is allowed at intermediate nodes. In the interesting case in which all nodes in the network have to deliver an arbitrary non-zero number of packets, we provide a closed formula for the makespan of the optimal gathering schedule. Additionally, we consider the problem of determining the computational complexity of data gathering in general graphs and show that the problem is NP-complete. On the positive side, we design a simple (1+2/m)-factor approximation algorithm for general networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4198256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact