The aim of this study was to determine which physiological variables predict excellence in middle- and long-distance runners. Forty middle-distance runners (age 23 ± 4 years, body mass 67.2 ± 5.9 kg, stature 1.80 ± 0.05 m, VO(2max) 65.9 ± 4.5 ml · kg(-1) · min(-1)) and 32 long-distance runners (age 25 ± 4 years, body mass 59.8 ± 5.1 kg, stature 1.73 ± 0.06 m, VO(2max) 71.6 ± 5.0 ml · kg(-1) · min(-1)) competing at international standard performed an incremental running test to exhaustion. Expired gas analysis was performed breath-by-breath and maximum oxygen uptake (VO(2max)) and two ventilatory thresholds (VT(1) and VT(2)) were calculated. Long-distance runners presented a higher VO(2max) than middle-distance runners when expressed relative to body mass (P < 0.001, d = 1.18, 95% CI [0.68, 1.68]). At the intensities corresponding to VT(1) and VT(2), long-distance runners showed higher values for VO(2) expressed relative to body mass or %VO(2max), speed and oxygen cost of running (P < 0.05). When oxygen uptake was adjusted for body mass, differences between groups were consistent. Logistic binary regression analysis showed that VO(2max) (expressed as l · min(-1) and ml · kg(-1) · min(-1)), VO(2VT2) (expressed as ml · kg(-0.94) · min(-1)), and speed at VT(2) (v(VT2)) categorized long-distance runners. In addition, the multivariate model correctly classified 84.7% of the athletes. Thus, VO(2max), VO(2VT2), and v(VT2) discriminate between elite middle-distance and long-distance runners.

Physiological determinants of speciality of elite middle- and long-distance runners.

MAFFULLI, Nicola
2011

Abstract

The aim of this study was to determine which physiological variables predict excellence in middle- and long-distance runners. Forty middle-distance runners (age 23 ± 4 years, body mass 67.2 ± 5.9 kg, stature 1.80 ± 0.05 m, VO(2max) 65.9 ± 4.5 ml · kg(-1) · min(-1)) and 32 long-distance runners (age 25 ± 4 years, body mass 59.8 ± 5.1 kg, stature 1.73 ± 0.06 m, VO(2max) 71.6 ± 5.0 ml · kg(-1) · min(-1)) competing at international standard performed an incremental running test to exhaustion. Expired gas analysis was performed breath-by-breath and maximum oxygen uptake (VO(2max)) and two ventilatory thresholds (VT(1) and VT(2)) were calculated. Long-distance runners presented a higher VO(2max) than middle-distance runners when expressed relative to body mass (P < 0.001, d = 1.18, 95% CI [0.68, 1.68]). At the intensities corresponding to VT(1) and VT(2), long-distance runners showed higher values for VO(2) expressed relative to body mass or %VO(2max), speed and oxygen cost of running (P < 0.05). When oxygen uptake was adjusted for body mass, differences between groups were consistent. Logistic binary regression analysis showed that VO(2max) (expressed as l · min(-1) and ml · kg(-1) · min(-1)), VO(2VT2) (expressed as ml · kg(-0.94) · min(-1)), and speed at VT(2) (v(VT2)) categorized long-distance runners. In addition, the multivariate model correctly classified 84.7% of the athletes. Thus, VO(2max), VO(2VT2), and v(VT2) discriminate between elite middle-distance and long-distance runners.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4203254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact