We prove that the realization A_p in L^p(R^N) of the Schroedinger type operator A=(1+|x|^{alpha})Delta-|x|^{beta} with domain D(A_p)={u in W^{2,p}(R^N): Au in L^p(R^N)} generates a strongly continuous analytic semigroup provided that N>2, alpha >2 and beta >alpha -2. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.
Schrodinger type operators with unbounded diffusion and potential terms
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
CANALE, Anna;RHANDI, Abdelaziz
;TACELLI, CRISTIAN
			2016
Abstract
We prove that the realization A_p in L^p(R^N) of the Schroedinger type operator A=(1+|x|^{alpha})Delta-|x|^{beta} with domain D(A_p)={u in W^{2,p}(R^N): Au in L^p(R^N)} generates a strongly continuous analytic semigroup provided that N>2, alpha >2 and beta >alpha -2. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											A.Canale-C.Tacelli-A.Rhandi, Schrodinger-type operator for Vqr.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo principale
										 
									
									
									
										
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
									
									
									
									
										
											Licenza:
											
											
												DRM non definito
												
												
												
											
										 
									
									
										Dimensione
										366.59 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								366.59 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


