We introduce and investigate a category-theoretic abstraction of the standard "system-solution" adjunction in affine algebraic geometry. We then look further into these geometric adjunctions at different levels of generality, from syntactic categories to (possibly infinitary) equational classes of algebras. In doing so, we discuss the relationships between the dualities induced by our framework and the well-established theory of concrete dual adjunctions. In the context of general algebra we prove an analogue of Hilbert's Nullstellensatz, thereby achieving a complete characterisation of the fixed points on the algebraic side of the adjunction.
General affine adjunctions, Nullstellensätze, and dualities
SPADA, Luca
2020-01-01
Abstract
We introduce and investigate a category-theoretic abstraction of the standard "system-solution" adjunction in affine algebraic geometry. We then look further into these geometric adjunctions at different levels of generality, from syntactic categories to (possibly infinitary) equational classes of algebras. In doing so, we discuss the relationships between the dualities induced by our framework and the well-established theory of concrete dual adjunctions. In the context of general algebra we prove an analogue of Hilbert's Nullstellensatz, thereby achieving a complete characterisation of the fixed points on the algebraic side of the adjunction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.