We study a combinatorial model of the spread of influence in networks that generalizes existing schemata recently proposed in the literature. In our model, agents change behaviours/opinions on the basis of information collected from their neighbours in a time interval of bounded size whereas agents are assumed to have unbounded memory in previously studied scenarios. In our mathematical framework, one is given a network G = (V , E), an integer value t(v) for each node v ∈ V , and a time window size λ. The goal is to determine a small set of nodes (target set) that influences the whole graph. The spread of influence proceeds in rounds as follows: initially all nodes in the target set are influenced; subsequently, in each round, any uninfluenced node v becomes influenced if the number of its neighbours that have been influenced in the previous λ rounds is greater than or equal to t(v). We prove that the problem of finding a minimum cardinality target set that influences the whole network G is hard to approximate within a polylogarithmic factor. On the positive side, we design exact polynomial time algorithms for paths, rings, and trees
Influence Diffusion in Social Networks under Time Window Constraints
GARGANO, Luisa;VACCARO, Ugo
2015-01-01
Abstract
We study a combinatorial model of the spread of influence in networks that generalizes existing schemata recently proposed in the literature. In our model, agents change behaviours/opinions on the basis of information collected from their neighbours in a time interval of bounded size whereas agents are assumed to have unbounded memory in previously studied scenarios. In our mathematical framework, one is given a network G = (V , E), an integer value t(v) for each node v ∈ V , and a time window size λ. The goal is to determine a small set of nodes (target set) that influences the whole graph. The spread of influence proceeds in rounds as follows: initially all nodes in the target set are influenced; subsequently, in each round, any uninfluenced node v becomes influenced if the number of its neighbours that have been influenced in the previous λ rounds is greater than or equal to t(v). We prove that the problem of finding a minimum cardinality target set that influences the whole network G is hard to approximate within a polylogarithmic factor. On the positive side, we design exact polynomial time algorithms for paths, rings, and treesFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0304397515001127-main.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
452.06 kB
Formato
Adobe PDF
|
452.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.