Restricted Gauss-Markov processes are used to construct inhomogeneous leaky integrate-and-fire stochastic models for single neuron’s activity in the presence of a lower reflecting boundary and periodic input signals. The first-passage time problem through a time-dependent threshold is explicitly developed; numerical, simulation and asymptotic results for firing densities are provided.
Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals
NOBILE, Amelia Giuseppina;
2015
Abstract
Restricted Gauss-Markov processes are used to construct inhomogeneous leaky integrate-and-fire stochastic models for single neuron’s activity in the presence of a lower reflecting boundary and periodic input signals. The first-passage time problem through a time-dependent threshold is explicitly developed; numerical, simulation and asymptotic results for firing densities are provided.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CAM-D-14-00866R2_rev.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.