In this paper we face the problem of maximizing the amount of time over which a set of target points, located in a given geographic region, can be monitored by means of a wireless sensor network. The problem is well known in the literature as Maximum Network Lifetime Problem (MLP). In the last few years the problem and a number of variants have been tackled with success by means of different resolution approaches, including exact approaches based on column generation techniques. In this work we propose an exact approach which combines a column generation approach with a genetic algorithm aimed at solving efficiently its separation problem. The genetic algorithm is specifically aimed at the Maximum Network α-Lifetime Problem (α-MLP), a variant of MLP in which a given fraction of targets is allowed to be left uncovered at all times; however, since α-MLP is a generalization of MLP, it can be used to solve the classical problem as well. The computational results, obtained on the benchmark instances, show that our approach overcomes the algorithms, available in the literature, to solve both MLP and α-MLP.
A hybrid exact approach for maximizing lifetime in sensor networks with complete and partial coverage constraints
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
CARRABS, FRANCESCO
;CERULLI, Raffaele;D'AMBROSIO, CIRIACO;RAICONI, ANDREA
			2015
Abstract
In this paper we face the problem of maximizing the amount of time over which a set of target points, located in a given geographic region, can be monitored by means of a wireless sensor network. The problem is well known in the literature as Maximum Network Lifetime Problem (MLP). In the last few years the problem and a number of variants have been tackled with success by means of different resolution approaches, including exact approaches based on column generation techniques. In this work we propose an exact approach which combines a column generation approach with a genetic algorithm aimed at solving efficiently its separation problem. The genetic algorithm is specifically aimed at the Maximum Network α-Lifetime Problem (α-MLP), a variant of MLP in which a given fraction of targets is allowed to be left uncovered at all times; however, since α-MLP is a generalization of MLP, it can be used to solve the classical problem as well. The computational results, obtained on the benchmark instances, show that our approach overcomes the algorithms, available in the literature, to solve both MLP and α-MLP.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											2015_hybrid exact approach_JNCA_DOI_pp.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo principale
										 
									
									
									
										
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										2.55 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.55 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


