Plasmacytoid dendritic cells (pDCs) highly populate lung tumor masses and are strictly correlated to bad prognosis, yet their role in lung cancer is controversial. To understand their role in lung cancer, we isolated pDCs from human samples of lung obtained from non-small cell lung cancer patients undergoing thoracic surgery. Tumor masses presented a higher percentage of pDCs than healthy tissues; pDCs were in the immunosuppressive phenotype, as determined by higher levels of CD33 and PD-L1. Despite higher HLA-A and HLA-D expression, cancerous pDCs did not exert cytotoxic activity against tumor cells but instead promoted their proliferation. In this scenario, cancerous pDCs were able to produce high levels of IL-1α. This effect was observed on the specific activation of the inflammasome absent in melanoma 2 (AIM2), which led to higher cytoplasmic calcium release responsible for calpain activation underlying IL-1α release. The blockade of type I interferon receptor and of AIM2 via the addition of LL-37 significantly reduced the release of IL-1α, which was still high after Nod-like receptor P3 inhibition via glibenclamide. More important, mitochondrial-derived reactive oxygen species sequester diminished AIM2-dependent IL-1α release. Our data demonstrate that lung tumor-associated pDCs are responsive to the activation of AIM2 that promotes calcium efflux and reactive oxygen species from mitochondria, leading to calpain activation and high levels of IL-1α, which facilitate tumor cell proliferation in the lung.
Human Lung Cancer-Derived Immunosuppressive Plasmacytoid Dendritic Cells Release IL-1α in an AIM2 Inflammasome-Dependent Manner
SORRENTINO, ROSALINDA;TERLIZZI, MICHELA;DI CRESCENZO, VINCENZO GIUSEPPE;POPOLO, Ada;PECORARO, MICHELA;PINTO, Aldo
2015-01-01
Abstract
Plasmacytoid dendritic cells (pDCs) highly populate lung tumor masses and are strictly correlated to bad prognosis, yet their role in lung cancer is controversial. To understand their role in lung cancer, we isolated pDCs from human samples of lung obtained from non-small cell lung cancer patients undergoing thoracic surgery. Tumor masses presented a higher percentage of pDCs than healthy tissues; pDCs were in the immunosuppressive phenotype, as determined by higher levels of CD33 and PD-L1. Despite higher HLA-A and HLA-D expression, cancerous pDCs did not exert cytotoxic activity against tumor cells but instead promoted their proliferation. In this scenario, cancerous pDCs were able to produce high levels of IL-1α. This effect was observed on the specific activation of the inflammasome absent in melanoma 2 (AIM2), which led to higher cytoplasmic calcium release responsible for calpain activation underlying IL-1α release. The blockade of type I interferon receptor and of AIM2 via the addition of LL-37 significantly reduced the release of IL-1α, which was still high after Nod-like receptor P3 inhibition via glibenclamide. More important, mitochondrial-derived reactive oxygen species sequester diminished AIM2-dependent IL-1α release. Our data demonstrate that lung tumor-associated pDCs are responsive to the activation of AIM2 that promotes calcium efflux and reactive oxygen species from mitochondria, leading to calpain activation and high levels of IL-1α, which facilitate tumor cell proliferation in the lung.File | Dimensione | Formato | |
---|---|---|---|
Human Lung CancereDerived Immunosuppressive.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.