Studying the divergence continuum in plants is relevant to fundamental and applied biology because of the potential to reveal functionally important genetic variation. In this context, whole-genome sequencing (WGS) provides the necessary rigour for uncovering footprints of selection. We resequenced populations of two divergent phylogeographic lineages of Populus alba (n = 48), thoroughly characterized by microsatellites (n = 317), and scanned their genomes for regions of unusually high allelic differentiation and reduced diversity using > 1.7 million single nucleotide polymorphisms (SNPs) from WGS. Results were confirmed by Sanger sequencing. On average, 9134 high-differentiation (≥ 4 standard deviations) outlier SNPs were uncovered between populations, 848 of which were shared by ≥ three replicate comparisons. Annotation revealed that 545 of these were located in 437 predicted genes. Twelve percent of differentiation outlier genome regions exhibited significantly reduced genetic diversity. Gene ontology (GO) searches were successful for 327 high-differentiation genes, and these were enriched for 63 GO terms. Our results provide a snapshot of the roles of 'hard selective sweeps' vs divergent selection of standing genetic variation in distinct postglacial recolonization lineages of P. alba. Thus, this study adds to our understanding of the mechanisms responsible for the origin of functionally relevant variation in temperate trees.

Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree

CASTIGLIONE, STEFANO;
2015

Abstract

Studying the divergence continuum in plants is relevant to fundamental and applied biology because of the potential to reveal functionally important genetic variation. In this context, whole-genome sequencing (WGS) provides the necessary rigour for uncovering footprints of selection. We resequenced populations of two divergent phylogeographic lineages of Populus alba (n = 48), thoroughly characterized by microsatellites (n = 317), and scanned their genomes for regions of unusually high allelic differentiation and reduced diversity using > 1.7 million single nucleotide polymorphisms (SNPs) from WGS. Results were confirmed by Sanger sequencing. On average, 9134 high-differentiation (≥ 4 standard deviations) outlier SNPs were uncovered between populations, 848 of which were shared by ≥ three replicate comparisons. Annotation revealed that 545 of these were located in 437 predicted genes. Twelve percent of differentiation outlier genome regions exhibited significantly reduced genetic diversity. Gene ontology (GO) searches were successful for 327 high-differentiation genes, and these were enriched for 63 GO terms. Our results provide a snapshot of the roles of 'hard selective sweeps' vs divergent selection of standing genetic variation in distinct postglacial recolonization lineages of P. alba. Thus, this study adds to our understanding of the mechanisms responsible for the origin of functionally relevant variation in temperate trees.
File in questo prodotto:
File Dimensione Formato  
St-lting_et_al-2015-New_Phytologist.pdf

accesso aperto

Descrizione: PDF
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 681.35 kB
Formato Adobe PDF
681.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4657797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact