In this study ultrasound-assisted atomization technique was combined with two-stages polyelectrolyte complexation to produce enteric shell-core microparticles encapsulating a non-steroidal, anti-inflammatory gastrolesive active ingredient indomethacin. In particular, a solution of the anionic biopolymer alginate, containing indomethacin, was sprayed in fine droplets which were complexed with a cationic (meth)acrylate copolymer, Eudragit® E 100, which, in turn, was complexed by the anionic copolymer Eudragit® L30D-55. The first complexation stage was applied to achieve a high drug encapsulation efficiency; the second one to assure good gastroresistance feature. The novel protocol has been found more effective in terms of loading, encapsulation efficiency, and enteric properties during in vitro release tests, than conventional procedures which involved alginate cross-linking by charged ions. Furthermore ultrasonic atomization-polyelectrolytes complexation preparation approach was performed using mild conditions, aqueous solutions, in the absence of organic solvents and chemical cross-linkers.

Ultrasonic atomization and polyelectrolyte complexation to produce gastroresistant shell-core microparticles

DALMORO, ANNALISA;LAMBERTI, Gaetano;BARBA, Anna Angela;
2016-01-01

Abstract

In this study ultrasound-assisted atomization technique was combined with two-stages polyelectrolyte complexation to produce enteric shell-core microparticles encapsulating a non-steroidal, anti-inflammatory gastrolesive active ingredient indomethacin. In particular, a solution of the anionic biopolymer alginate, containing indomethacin, was sprayed in fine droplets which were complexed with a cationic (meth)acrylate copolymer, Eudragit® E 100, which, in turn, was complexed by the anionic copolymer Eudragit® L30D-55. The first complexation stage was applied to achieve a high drug encapsulation efficiency; the second one to assure good gastroresistance feature. The novel protocol has been found more effective in terms of loading, encapsulation efficiency, and enteric properties during in vitro release tests, than conventional procedures which involved alginate cross-linking by charged ions. Furthermore ultrasonic atomization-polyelectrolytes complexation preparation approach was performed using mild conditions, aqueous solutions, in the absence of organic solvents and chemical cross-linkers.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4669873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact