We examine the interplay between learning and privacy over multiagent consensus networks. The learning objective of each individual agent consists of computing some global network statistic, and is accomplished by means of a consensus protocol. The privacy objective consists of preventing inference of the individual agents' data from the information exchanged during the consensus stages, and is accomplished by adding some artificial noise to the observations (obfuscation). An analytical characterization of the learning and privacy performance is provided, with reference to a consensus perturbing and to a consensus-preserving obfuscation strategy.

Learning with privacy in consensus + obfuscation

MARANO, Stefano;MATTA, Vincenzo
2016

Abstract

We examine the interplay between learning and privacy over multiagent consensus networks. The learning objective of each individual agent consists of computing some global network statistic, and is accomplished by means of a consensus protocol. The privacy objective consists of preventing inference of the individual agents' data from the information exchanged during the consensus stages, and is accomplished by adding some artificial noise to the observations (obfuscation). An analytical characterization of the learning and privacy performance is provided, with reference to a consensus perturbing and to a consensus-preserving obfuscation strategy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4674701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact