Farnesyltransferase inhibitors (FTIs) are a class of oral anti-cancer drugs currently tested in phase I-II clinical trials for treatment of hematological malignancies. The in vitro effects of various FTIs (alpha-hydroxyfarnesylphosphonic acid, manumycin-A and SCH66336) were tested on CD34+ KG1a cell line and in primary acute myeloid leukemia (AML) cells from 64 patients. By cell viability and clonogeneic methylcellulose assays, FTIs showed a significant inhibitory activity in CD34+ KG1a and primary bone marrow (BM) leukemic cells from 56% of AML patients. FTIs also induced activation of caspase-3 and Fas-independent apoptosis, confirmed by the finding that inhibition of caspase-8 was not associated with the rescue of FTI-treated cells. We concluded that other cellular events induced by FTIs may trigger activation of caspase-3 and subsequent apoptosis, but the expression of proapoptotic molecules, as Bcl-2 and Bcl-XL, and antiapoptotic, as Bcl-X(s), were not modified by FTIs. By contrast, expression of inducible nitric oxide synthase (iNOS) was increased in FTI-treated AML cells. Our results suggest a very complex mechanism of action of FTIs that require more studies for a better clinical use of the drugs alone or in combination in the treatment of hematological malignancies.

In vitro apoptotic effects of farnesyltransferase blockade in acute myeloid leukemia cells.

Giudice, V;MARINO, LUIGI;SELLERI, Carmine
2016-01-01

Abstract

Farnesyltransferase inhibitors (FTIs) are a class of oral anti-cancer drugs currently tested in phase I-II clinical trials for treatment of hematological malignancies. The in vitro effects of various FTIs (alpha-hydroxyfarnesylphosphonic acid, manumycin-A and SCH66336) were tested on CD34+ KG1a cell line and in primary acute myeloid leukemia (AML) cells from 64 patients. By cell viability and clonogeneic methylcellulose assays, FTIs showed a significant inhibitory activity in CD34+ KG1a and primary bone marrow (BM) leukemic cells from 56% of AML patients. FTIs also induced activation of caspase-3 and Fas-independent apoptosis, confirmed by the finding that inhibition of caspase-8 was not associated with the rescue of FTI-treated cells. We concluded that other cellular events induced by FTIs may trigger activation of caspase-3 and subsequent apoptosis, but the expression of proapoptotic molecules, as Bcl-2 and Bcl-XL, and antiapoptotic, as Bcl-X(s), were not modified by FTIs. By contrast, expression of inducible nitric oxide synthase (iNOS) was increased in FTI-treated AML cells. Our results suggest a very complex mechanism of action of FTIs that require more studies for a better clinical use of the drugs alone or in combination in the treatment of hematological malignancies.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4677519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact