High levels of the so-called community noise may produce hazardous effect on the health of a population exposed to them for large periods of time. Hence, the study of the behaviour of those noise measurements is very important. In this work we analyse that in terms of the probability of exceeding a given threshold level a certain number of times in a time interval of interest. Since the datasets considered contain missing measurements, we use a time series model to estimate the missing values and complete the datasets. Once the data is complete, we use a non-homogeneous Poisson model with multiple change-points to estimate the probability of interest. Estimation of the parameters of the models are made using the usual time series methodology as well as the Bayesian point of view via Markov chain Monte Carlo algorithms. The models are applied to data obtained from two measuring sites in Messina, Italy.

A time series analysis and a non-homogeneous Poisson model with multiple change-points applied to acoustic data

GUARNACCIA, CLAUDIO
;
QUARTIERI, Joseph;TEPEDINO, CARMINE;
2016-01-01

Abstract

High levels of the so-called community noise may produce hazardous effect on the health of a population exposed to them for large periods of time. Hence, the study of the behaviour of those noise measurements is very important. In this work we analyse that in terms of the probability of exceeding a given threshold level a certain number of times in a time interval of interest. Since the datasets considered contain missing measurements, we use a time series model to estimate the missing values and complete the datasets. Once the data is complete, we use a non-homogeneous Poisson model with multiple change-points to estimate the probability of interest. Estimation of the parameters of the models are made using the usual time series methodology as well as the Bayesian point of view via Markov chain Monte Carlo algorithms. The models are applied to data obtained from two measuring sites in Messina, Italy.
File in questo prodotto:
File Dimensione Formato  
A time series analysis preprint APAC-D-16-00088 versione sottomessa.pdf

accesso aperto

Descrizione: Preprint A time series analysis and Poisson
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 880.5 kB
Formato Adobe PDF
880.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4679602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 9
social impact