The possibility to remotely manipulate intracellular pathways in single cells is among the current goals of biomedicine, demanding new strategies to control cell function and reprogramming cell fate upon external triggering. Optogenetics is one approach in this direction, allowing specific cell stimulation by external illumination. Here, we developed optical switchers of an ancient and highly conserved system controlling a variety of developmental and adult processes in all metazoans, from Hydra to mammals, the Wnt/β-catenin signaling pathway. An intracellular modulator of the Wnt pathway was enclosed into polyelectrolyte multilayer microcapsules engineered to include self-tracking (i.e., fluorescence labeling) and light mediated heating functionalities (i.e., plasmonic nanoparticles). Capsules were delivered in vivo to Hydra and NIR triggered drug release caused forced activation of the Wnt pathway. The possibility to remotely manipulate the Wnt pathway by optical switchers may be broadly translated to achieve spatiotemporal control of cell fate for new therapeutic strategies. © 2016 American Chemical Society.

Control of Wnt/β-Catenin Signaling Pathway in Vivo via Light Responsive Capsules

AMBROSONE, ALFREDO;
2016-01-01

Abstract

The possibility to remotely manipulate intracellular pathways in single cells is among the current goals of biomedicine, demanding new strategies to control cell function and reprogramming cell fate upon external triggering. Optogenetics is one approach in this direction, allowing specific cell stimulation by external illumination. Here, we developed optical switchers of an ancient and highly conserved system controlling a variety of developmental and adult processes in all metazoans, from Hydra to mammals, the Wnt/β-catenin signaling pathway. An intracellular modulator of the Wnt pathway was enclosed into polyelectrolyte multilayer microcapsules engineered to include self-tracking (i.e., fluorescence labeling) and light mediated heating functionalities (i.e., plasmonic nanoparticles). Capsules were delivered in vivo to Hydra and NIR triggered drug release caused forced activation of the Wnt pathway. The possibility to remotely manipulate the Wnt pathway by optical switchers may be broadly translated to achieve spatiotemporal control of cell fate for new therapeutic strategies. © 2016 American Chemical Society.
2016
File in questo prodotto:
File Dimensione Formato  
ACS Nano 2016, 10, 4828 −4834.pdf

non disponibili

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4681364
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 50
social impact