Aim: To develop new methodologies for selective cell ablation in a temporally and spatially precise fashion in model organisms. Materials & methods: living polyps (Hydra vulgaris) treated with gold nanoprisms were near-infrared (NIR) irradiated and the photothermal effects evaluated at whole-animal, cellular and molecular levels. Results: Nanoprisms showed good efficiency of internalization in living specimens, with no sign of toxicity; under NIR irradiation they induced cell death and the overexpression of the hsp70 gene. Conclusion: gold nanoprisms could be employed as efficient heat mediators in model organisms, and NIR-triggered cell ablation may represent a new advanced tool to study cell function. Solving bioethical and economical issues, invertebrates may provide alternative models bridging the gap between cell research and preclinical studies of photothermal therapy. © 2014 Future Medicine Ltd.
Gold nanoprisms for photothermal cell ablation in vivo
AMBROSONE, ALFREDO;
2014
Abstract
Aim: To develop new methodologies for selective cell ablation in a temporally and spatially precise fashion in model organisms. Materials & methods: living polyps (Hydra vulgaris) treated with gold nanoprisms were near-infrared (NIR) irradiated and the photothermal effects evaluated at whole-animal, cellular and molecular levels. Results: Nanoprisms showed good efficiency of internalization in living specimens, with no sign of toxicity; under NIR irradiation they induced cell death and the overexpression of the hsp70 gene. Conclusion: gold nanoprisms could be employed as efficient heat mediators in model organisms, and NIR-triggered cell ablation may represent a new advanced tool to study cell function. Solving bioethical and economical issues, invertebrates may provide alternative models bridging the gap between cell research and preclinical studies of photothermal therapy. © 2014 Future Medicine Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.