The emergence of online social networks has revolutionized the way people seek and share information. Nowadays, popular online social sites as Twitter, Facebook and Google+ are among the major news sources as well as the most effective channels for viral marketing. However, these networks also became the most effective channel for spreading misinformation, accidentally or maliciously. The widespread diffusion of inaccurate information or fake news can lead to undesirable and severe consequences, such as widespread panic, libelous campaigns and conspiracies. In order to guarantee the trustworthiness of online social networks it is a crucial challenge to find effective strategies to contrast the spread of the misinformation in the network. In this paper we concentrate our attention on two problems related to the diffusion of misinformation in social networks: identify the misinformation sources and limit its diffusion in the network. We consider a social network where some nodes have already been infected from misinformation. We first provide an heuristics to recognize the set of most probable sources of the infection. Then, we provide an heuristics to place a few monitors in some network nodes in order to control information diffused by the suspected nodes and block misinformation they injected in the network before it reaches a large part of the network. To verify the quality and efficiency of our suggested solutions, we conduct experiments on several real-world networks. Empirical results indicate that our heuristics are among the most effective known in literature.

Contrasting the Spread of Misinformation in Online Social Networks

AMORUSO, MARCO;ANELLO, DANIELE;AULETTA, Vincenzo;FERRAIOLI, DIODATO
2017-01-01

Abstract

The emergence of online social networks has revolutionized the way people seek and share information. Nowadays, popular online social sites as Twitter, Facebook and Google+ are among the major news sources as well as the most effective channels for viral marketing. However, these networks also became the most effective channel for spreading misinformation, accidentally or maliciously. The widespread diffusion of inaccurate information or fake news can lead to undesirable and severe consequences, such as widespread panic, libelous campaigns and conspiracies. In order to guarantee the trustworthiness of online social networks it is a crucial challenge to find effective strategies to contrast the spread of the misinformation in the network. In this paper we concentrate our attention on two problems related to the diffusion of misinformation in social networks: identify the misinformation sources and limit its diffusion in the network. We consider a social network where some nodes have already been infected from misinformation. We first provide an heuristics to recognize the set of most probable sources of the infection. Then, we provide an heuristics to place a few monitors in some network nodes in order to control information diffused by the suspected nodes and block misinformation they injected in the network before it reaches a large part of the network. To verify the quality and efficiency of our suggested solutions, we conduct experiments on several real-world networks. Empirical results indicate that our heuristics are among the most effective known in literature.
File in questo prodotto:
File Dimensione Formato  
misinform_iris_2.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: DRM non definito
Dimensione 630.58 kB
Formato Adobe PDF
630.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4682389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 17
social impact