The synthesis and the structural characterization of a cyclic hexapeptoid with four methoxyethyl and two propargyl side chains have disclosed the presence of a hydrate crystal form [form (I)] and an anhydrous crystal form [form (II)]. The relative amounts of form (I) and form (II) in the as-purified product were determined by Rietveld refinement and depend on the purification procedures. In crystal form (I), peptoid molecules assemble in a columnar arrangement by means of side-chain-to-backbone C CH OC hydrogen bonds. In the anhydrous crystal form (II), cyclopeptoid molecules form ribbons by means of backbone-to-backbone CH2 OC hydrogen bonds, thus mimicking -sheet secondary structures in proteins. In both crystal forms side chains act as joints among the columns or the ribbons and contribute to the stability of the whole solid-state assembly. Water molecules in the hydrate crystal form (I) bridge columns of cyclic peptoid molecules, providing a more efficient packing.
Synthesis, crystallization, X-ray structural characterization and solid-state assembly of a cyclic hexapeptoid with propargyl and methoxyethyl side chains
TEDESCO, Consiglia
;MACEDI, ELEONORA;MELI, ALESSANDRA;PIERRI, GIOVANNI;DELLA SALA, Giorgio;IZZO, Irene;DE RICCARDIS, Francesco
2017-01-01
Abstract
The synthesis and the structural characterization of a cyclic hexapeptoid with four methoxyethyl and two propargyl side chains have disclosed the presence of a hydrate crystal form [form (I)] and an anhydrous crystal form [form (II)]. The relative amounts of form (I) and form (II) in the as-purified product were determined by Rietveld refinement and depend on the purification procedures. In crystal form (I), peptoid molecules assemble in a columnar arrangement by means of side-chain-to-backbone C CH OC hydrogen bonds. In the anhydrous crystal form (II), cyclopeptoid molecules form ribbons by means of backbone-to-backbone CH2 OC hydrogen bonds, thus mimicking -sheet secondary structures in proteins. In both crystal forms side chains act as joints among the columns or the ribbons and contribute to the stability of the whole solid-state assembly. Water molecules in the hydrate crystal form (I) bridge columns of cyclic peptoid molecules, providing a more efficient packing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.