Identification and estimation of outliers in time series is proposed by using empirical likelihood methods. Theory and applications are developed for stationary autoregressive models with outliers distinguished in the usual additive and innovation types. Some other useful outlier types are considered as well. A simulation experiment is used for studying the behaviour of the empirical likelihood-based method in finite samples and indicates that the proposed methods are preferable when dealing with the non-Gaussian data. Our simulations suggest that the usual sequential procedure for multiple outlier detection is suitable also for the methods based on empirical likelihood.

Empirical likelihood for outlier detection and estimation in autoregressive time series

CUCINA, Domenico
2016

Abstract

Identification and estimation of outliers in time series is proposed by using empirical likelihood methods. Theory and applications are developed for stationary autoregressive models with outliers distinguished in the usual additive and innovation types. Some other useful outlier types are considered as well. A simulation experiment is used for studying the behaviour of the empirical likelihood-based method in finite samples and indicates that the proposed methods are preferable when dealing with the non-Gaussian data. Our simulations suggest that the usual sequential procedure for multiple outlier detection is suitable also for the methods based on empirical likelihood.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4684330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact