Denote the sum of element orders in a finite group G by ψ(G) and let Cn denote the cyclic group of order n. Suppose that G is a non-cyclic finite group of order n and q is the least prime divisor of n. We proved that ψ(G) ≤ 7⁄11 ψ(Cn) and ψ(G) &lt; 1/q-1 ψ(Cn). The first result is best possible, since for each n = 4k, k odd, there exists a group G of order n satisfying ψ(G) = 7/11 (Cn) and the second result implies that if G is of odd order, then (G) &lt; 1/2 ψ(Cn). Our results improve the inequality ψ(G) &lt; ψ(C) obtained by H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs in 2009, as well as other results obtained by S.M. Jafarian Amiri and M. Amiri in 2014 and by R. Shen, G. Chen and C. Wu in 2015. Furthermore, we obtained some ψ(G)-based sufficient conditions for the solvability of G.

### "An exact upper bound for sums of element orders in non-cyclic finite groups"

#### Abstract

Denote the sum of element orders in a finite group G by ψ(G) and let Cn denote the cyclic group of order n. Suppose that G is a non-cyclic finite group of order n and q is the least prime divisor of n. We proved that ψ(G) ≤ 7⁄11 ψ(Cn) and ψ(G) < 1/q-1 ψ(Cn). The first result is best possible, since for each n = 4k, k odd, there exists a group G of order n satisfying ψ(G) = 7/11 (Cn) and the second result implies that if G is of odd order, then (G) < 1/2 ψ(Cn). Our results improve the inequality ψ(G) < ψ(C) obtained by H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs in 2009, as well as other results obtained by S.M. Jafarian Amiri and M. Amiri in 2014 and by R. Shen, G. Chen and C. Wu in 2015. Furthermore, we obtained some ψ(G)-based sufficient conditions for the solvability of G.
##### Scheda breve Scheda completa Scheda completa (DC)
2018
File in questo prodotto:
File
An exact upper bound for sums of element orders.pdf

accesso aperto

Descrizione: Artcolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 275.86 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11386/4691198`