Supercritical assisted atomization (SAA) was used to produce coprecipitated submicroparticles of luteolin (LUT)/poly(vinylpyrrolidone) (PVP) for pharmaceutical applications. LUT has antioxidant, antiinflammatory, and antitumoral properties but is poorly water-soluble, whereas PVP is highly water-soluble. This polymer can be used to protect the active molecule and to improve its bioavailability. Different LUT/PVP weight ratios were selected ranging between 1:4 and 1:8. SAA produced partly collapsed spherical particles with controlled particle size and mean diameters ranging between 0.22 and 0.33 μm. UV-vis analyses revealed very high loading efficiency of LUT in SAA particles (99-100%). The powders are amorphous, whereas the untreated material shows crystalline patterns. Fourier transform infrared revealed that hydrogen bonds were created between the drug and polymer. Drug-release analysis indicated that the supercritical processing was successful: the LUT dissolution rate in a phosphate-buffered saline solution was up to 9 times faster compared to that of an unprocessed drug.

Production of Luteolin/Biopolymer Microspheres by Supercritical Assisted Atomization

DI CAPUA, ALESSIA;ADAMI, RENATA
;
REVERCHON, Ernesto
2017-01-01

Abstract

Supercritical assisted atomization (SAA) was used to produce coprecipitated submicroparticles of luteolin (LUT)/poly(vinylpyrrolidone) (PVP) for pharmaceutical applications. LUT has antioxidant, antiinflammatory, and antitumoral properties but is poorly water-soluble, whereas PVP is highly water-soluble. This polymer can be used to protect the active molecule and to improve its bioavailability. Different LUT/PVP weight ratios were selected ranging between 1:4 and 1:8. SAA produced partly collapsed spherical particles with controlled particle size and mean diameters ranging between 0.22 and 0.33 μm. UV-vis analyses revealed very high loading efficiency of LUT in SAA particles (99-100%). The powders are amorphous, whereas the untreated material shows crystalline patterns. Fourier transform infrared revealed that hydrogen bonds were created between the drug and polymer. Drug-release analysis indicated that the supercritical processing was successful: the LUT dissolution rate in a phosphate-buffered saline solution was up to 9 times faster compared to that of an unprocessed drug.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4693006
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact