Supercritical assisted atomization (SAA) was used to produce coprecipitated submicroparticles of luteolin (LUT)/poly(vinylpyrrolidone) (PVP) for pharmaceutical applications. LUT has antioxidant, antiinflammatory, and antitumoral properties but is poorly water-soluble, whereas PVP is highly water-soluble. This polymer can be used to protect the active molecule and to improve its bioavailability. Different LUT/PVP weight ratios were selected ranging between 1:4 and 1:8. SAA produced partly collapsed spherical particles with controlled particle size and mean diameters ranging between 0.22 and 0.33 μm. UV-vis analyses revealed very high loading efficiency of LUT in SAA particles (99-100%). The powders are amorphous, whereas the untreated material shows crystalline patterns. Fourier transform infrared revealed that hydrogen bonds were created between the drug and polymer. Drug-release analysis indicated that the supercritical processing was successful: the LUT dissolution rate in a phosphate-buffered saline solution was up to 9 times faster compared to that of an unprocessed drug.
Production of Luteolin/Biopolymer Microspheres by Supercritical Assisted Atomization
DI CAPUA, ALESSIA;ADAMI, RENATA
;REVERCHON, Ernesto
2017-01-01
Abstract
Supercritical assisted atomization (SAA) was used to produce coprecipitated submicroparticles of luteolin (LUT)/poly(vinylpyrrolidone) (PVP) for pharmaceutical applications. LUT has antioxidant, antiinflammatory, and antitumoral properties but is poorly water-soluble, whereas PVP is highly water-soluble. This polymer can be used to protect the active molecule and to improve its bioavailability. Different LUT/PVP weight ratios were selected ranging between 1:4 and 1:8. SAA produced partly collapsed spherical particles with controlled particle size and mean diameters ranging between 0.22 and 0.33 μm. UV-vis analyses revealed very high loading efficiency of LUT in SAA particles (99-100%). The powders are amorphous, whereas the untreated material shows crystalline patterns. Fourier transform infrared revealed that hydrogen bonds were created between the drug and polymer. Drug-release analysis indicated that the supercritical processing was successful: the LUT dissolution rate in a phosphate-buffered saline solution was up to 9 times faster compared to that of an unprocessed drug.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.