The high-dimensional nature of resting state functional MRI (fMRI) data implies the need of suitable feature selection techniques. Traditional univariate techniques are fast and straightforward to interpret, but are unable to unveil relationships among multiple features. The aim of this work is to evaluate the applicability of clustering based techniques to the problem of feature extraction in resting state fMRI data analysis. More specifically, we devise a methodology based on consensus clustering, a particular approach to the clustering problem that consists in combining different partitions of the same data set in a final solution. Our approach was validated on a real-word data set, deriving from multiple clinical studies on Parkinson’s disease and amyotrophic lateral sclerosis. Our results show that the adoption of consensus-based techniques can indeed lead to an improvement of the results, not only in terms of feature discriminability, but also from the point of view of interpretability.

Consensus-based feature extraction in rs-fMRI data analysis

GALDI, PAOLA
;
FRATELLO, MICHELE;TAGLIAFERRI, Roberto;ESPOSITO, Fabrizio
2018

Abstract

The high-dimensional nature of resting state functional MRI (fMRI) data implies the need of suitable feature selection techniques. Traditional univariate techniques are fast and straightforward to interpret, but are unable to unveil relationships among multiple features. The aim of this work is to evaluate the applicability of clustering based techniques to the problem of feature extraction in resting state fMRI data analysis. More specifically, we devise a methodology based on consensus clustering, a particular approach to the clustering problem that consists in combining different partitions of the same data set in a final solution. Our approach was validated on a real-word data set, deriving from multiple clinical studies on Parkinson’s disease and amyotrophic lateral sclerosis. Our results show that the adoption of consensus-based techniques can indeed lead to an improvement of the results, not only in terms of feature discriminability, but also from the point of view of interpretability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4695683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact