The theory of spontaneous symmetry breaking-one of the cornerstones of modern condensed-matter physics-underlies the connection between a classically ordered object in the thermodynamic limit and its microscopic quantum-mechanical constituents. However, a large, but not infinitely large, system requires a finite symmetry-breaking perturbation to stabilize a symmetry-broken state over the exact quantum-mechanical ground state, respecting the symmetry. Here, we use the example of a particular antiferromagnetic model system to show that no matter how slowly such a symmetry-breaking perturbation is driven, the adiabatic limit can never be reached. Dynamically induced collective excitations- "quantum defects"-preempt the symmetry-breaking phenomenon and trigger the appearance of a symmetric nonequilibrium state that recursively collapses into the classical equilibrium state, breaking the symmetry at punctured times. The presence of this state allows "quantum-classical" transitions to be investigated and controlled in mesoscopic devices by externally supplying a proper dynamical symmetry-breaking perturbation. © 2011 American Physical Society.

Defect formation preempts dynamical symmetry breaking in closed quantum systems

Ortix, Carmine;
2011

Abstract

The theory of spontaneous symmetry breaking-one of the cornerstones of modern condensed-matter physics-underlies the connection between a classically ordered object in the thermodynamic limit and its microscopic quantum-mechanical constituents. However, a large, but not infinitely large, system requires a finite symmetry-breaking perturbation to stabilize a symmetry-broken state over the exact quantum-mechanical ground state, respecting the symmetry. Here, we use the example of a particular antiferromagnetic model system to show that no matter how slowly such a symmetry-breaking perturbation is driven, the adiabatic limit can never be reached. Dynamically induced collective excitations- "quantum defects"-preempt the symmetry-breaking phenomenon and trigger the appearance of a symmetric nonequilibrium state that recursively collapses into the classical equilibrium state, breaking the symmetry at punctured times. The presence of this state allows "quantum-classical" transitions to be investigated and controlled in mesoscopic devices by externally supplying a proper dynamical symmetry-breaking perturbation. © 2011 American Physical Society.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4706813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact