The development of embedded sensors based on a structural thermosetting epoxy resin reinforced with 0.3 wt% of multi-walled (MW) carbon nanotubes (CNTs) for real-time structural health monitoring is presented. The storage modulus of the composites is higher than 2000 MPa in a wide temperature range confirming their reliability as structural parts, especially for aeronautical applications. The piezoresistive properties are studied on specimens subjected to both tension and flexural stresses. The yield strength evaluated with the same approach adopted for metallic materials and alloys compares successfully with the information provided by the electrical characterization. Different levels of damages are revealed by the changes in the piezoresistive properties due to the morphological modifications in the conductive network of CNTs within the resin. The analysis of an empirical law is proposed for predicting the strain-dependence of the electrical and mechanical properties of material when the samples are subjected to stretch-release cycles. The average CNTs interparticle distances as function of bending is also estimated.

Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring

Spinelli, Giovanni
;
Lamberti, Patrizia;Tucci, Vincenzo;Vertuccio, Luigi
;
Guadagno, Liberata
2018

Abstract

The development of embedded sensors based on a structural thermosetting epoxy resin reinforced with 0.3 wt% of multi-walled (MW) carbon nanotubes (CNTs) for real-time structural health monitoring is presented. The storage modulus of the composites is higher than 2000 MPa in a wide temperature range confirming their reliability as structural parts, especially for aeronautical applications. The piezoresistive properties are studied on specimens subjected to both tension and flexural stresses. The yield strength evaluated with the same approach adopted for metallic materials and alloys compares successfully with the information provided by the electrical characterization. Different levels of damages are revealed by the changes in the piezoresistive properties due to the morphological modifications in the conductive network of CNTs within the resin. The analysis of an empirical law is proposed for predicting the strain-dependence of the electrical and mechanical properties of material when the samples are subjected to stretch-release cycles. The average CNTs interparticle distances as function of bending is also estimated.
File in questo prodotto:
File Dimensione Formato  
2018_JCOMB_Experimental and theoretical study on piezoresistive_preprint_NOTE.pdf

accesso aperto

Descrizione: documento in pre-print
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: DRM non definito
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4708517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 63
social impact