This paper aims at deepening the theme of monitoring and energetic diagnosis of telecommunication (TLC) central offices, via the development and application of innovative performance parameters, whose objective is to detect the presence of anomalous energy absorption of the electronic equipment and cooling systems. Firstly, extensive energy analysis is conducted by using the heating degree days (HDD) parameter, which is already consolidated in the field of efficient thermal management of data-centers. Secondly, properly designed indicators are added to this metric: the parameter of central utilization (PUC), which allows distinguishing the multi-use (e.g. combined TLC rooms and offices) from pure central offices; the index of cluster reliability (ICR), which evaluates the stability in time of the acquired data, and the reliability index (RI). The last parameter was specifically introduced to assess if a data center exhibits an unusual energy behavior with respect to a reference energy consumption benchmark, here defined for the group the site belongs to. The innovative contribution of the paper lies in the introduction and joint use of ICR and RI parameters, which can be set up as an effective diagnostic tool for telecommunications sites. The combined verification of current ICR and RI values allows outlining four possible scenarios, differentiated on the basis of the data reliability. Particularly, immediate determination of reliable and unreliable TLC sites is enabled, while the diagnostic potential is exploited to determine whether deeper investigation of energetic consumption trajectories is required. Specifically, the joint assessment of the ICR-RI pair was successfully applied to detecting the presence of anomalous TLC and cooling energy consumption data, as well as whether these abnormalities were due to inefficient thermal management or sensor malfunctioning.

Introducing innovative energy performance metrics for high-level monitoring and diagnosis of telecommunication sites

D'Aniello, Federica;Sorrentino, Marco;Rizzo, Gianfranco;
2018-01-01

Abstract

This paper aims at deepening the theme of monitoring and energetic diagnosis of telecommunication (TLC) central offices, via the development and application of innovative performance parameters, whose objective is to detect the presence of anomalous energy absorption of the electronic equipment and cooling systems. Firstly, extensive energy analysis is conducted by using the heating degree days (HDD) parameter, which is already consolidated in the field of efficient thermal management of data-centers. Secondly, properly designed indicators are added to this metric: the parameter of central utilization (PUC), which allows distinguishing the multi-use (e.g. combined TLC rooms and offices) from pure central offices; the index of cluster reliability (ICR), which evaluates the stability in time of the acquired data, and the reliability index (RI). The last parameter was specifically introduced to assess if a data center exhibits an unusual energy behavior with respect to a reference energy consumption benchmark, here defined for the group the site belongs to. The innovative contribution of the paper lies in the introduction and joint use of ICR and RI parameters, which can be set up as an effective diagnostic tool for telecommunications sites. The combined verification of current ICR and RI values allows outlining four possible scenarios, differentiated on the basis of the data reliability. Particularly, immediate determination of reliable and unreliable TLC sites is enabled, while the diagnostic potential is exploited to determine whether deeper investigation of energetic consumption trajectories is required. Specifically, the joint assessment of the ICR-RI pair was successfully applied to detecting the presence of anomalous TLC and cooling energy consumption data, as well as whether these abnormalities were due to inefficient thermal management or sensor malfunctioning.
2018
File in questo prodotto:
File Dimensione Formato  
Rizzo Gianfranco 2-729.pdf

non disponibili

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 921.96 kB
Formato Adobe PDF
921.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
729 Rizzo Pre-print.pdf

accesso aperto

Descrizione: 1359-4311/ © 2018 Elsevier Ltd. All rights reserved. Link editore: https://doi.org/10.1016/j.applthermaleng.2018.03.061
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 837.54 kB
Formato Adobe PDF
837.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4710914
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact