Pulsed electric fields with duration in the sub- μs and ns time scale (nsPEFs) increase the permeability of cell membranes, enabling the transport of normally impermeant molecules into or out of the cell (electroporation). Such effect is associated to intracellular alterations and indicates nsPEFs as a new stimulus to modulate cell functions. In particular, studies dealing with the application of nsPEFs to excitable cells suggest their use for the stimulation/inhibition of cell excitation. In this paper, the circuital model per surface unit of the plasma membrane of an axon was developed to implement the Hodgkin and Huxley equations, describing the action potential activation process. For the first time, a power electronics circuital simulator was adopted. The model was first validated with conventional microsecond stimuli, and then it was employed to identify the conditions for cell excitation by nsPEFs. The results demonstrated the possibility of electrostimulation by nsPEFs at depolarization levels far below those required for inducing electroporation, and with ionic current dynamics similar to that induced by conventional stimuli, confirming recent experimental findings. Moreover, by using a power electronics tool, easier integration of the cell modeling with the design and optimization of pulse generation systems can be gained.

ns Pulsed Electric Field-Induced Action Potentials in the Circuital Model of an Axon

Lamberti, Patrizia
;
COMPITIELLO, MICHELE;
2018-01-01

Abstract

Pulsed electric fields with duration in the sub- μs and ns time scale (nsPEFs) increase the permeability of cell membranes, enabling the transport of normally impermeant molecules into or out of the cell (electroporation). Such effect is associated to intracellular alterations and indicates nsPEFs as a new stimulus to modulate cell functions. In particular, studies dealing with the application of nsPEFs to excitable cells suggest their use for the stimulation/inhibition of cell excitation. In this paper, the circuital model per surface unit of the plasma membrane of an axon was developed to implement the Hodgkin and Huxley equations, describing the action potential activation process. For the first time, a power electronics circuital simulator was adopted. The model was first validated with conventional microsecond stimuli, and then it was employed to identify the conditions for cell excitation by nsPEFs. The results demonstrated the possibility of electrostimulation by nsPEFs at depolarization levels far below those required for inducing electroporation, and with ionic current dynamics similar to that induced by conventional stimuli, confirming recent experimental findings. Moreover, by using a power electronics tool, easier integration of the cell modeling with the design and optimization of pulse generation systems can be gained.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4713660
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact