Molecular docking is a computationally efficient method used to predict the conformations adopted by the ligand within a target-binding site. A positive aspect of conventional docking is the possibility of easily distributing the calculation on dedicated grid or cluster. The receptor is usually kept rigid, therefore the changes in the binding pocket geometry induced by the ligand is overlooked. Here we present a new docking approach (DynDock) that exploits molecular dynamics to preserve the flexibility of the receptor. To maintain high computational efficiency, DynDock has been developed to be distributed on a grid. The main advantages of this method are the full flexible molecular docking achieved during the simulation and the reduced number of compounds collected.

Fragment based molecular dynamics for drug design

Sessa, Lucia;Di Biasi, Luigi;Concilio, Simona;Piotto, Stefano
2018-01-01

Abstract

Molecular docking is a computationally efficient method used to predict the conformations adopted by the ligand within a target-binding site. A positive aspect of conventional docking is the possibility of easily distributing the calculation on dedicated grid or cluster. The receptor is usually kept rigid, therefore the changes in the binding pocket geometry induced by the ligand is overlooked. Here we present a new docking approach (DynDock) that exploits molecular dynamics to preserve the flexibility of the receptor. To maintain high computational efficiency, DynDock has been developed to be distributed on a grid. The main advantages of this method are the full flexible molecular docking achieved during the simulation and the reduced number of compounds collected.
2018
9783319786575
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4713789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact