We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Πl ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter lk ε=πk+O(ε) with any k=1,2,3,. such that the waveguide Πlk ε ε supports a trapped mode with an eigenvalue λk ε=π2−4π4l2ε2+O(ε3) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π2], and it is absent in the case l≠lk ε. The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Πl ε, namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.

Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation

Durante Tiziana;
2018

Abstract

We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide Πl ε formed by the union of an infinite strip and a narrow box-shaped perturbation of size 2l×ε, where ε>0 is a small parameter. We prove the existence of the length parameter lk ε=πk+O(ε) with any k=1,2,3,. such that the waveguide Πlk ε ε supports a trapped mode with an eigenvalue λk ε=π2−4π4l2ε2+O(ε3) embedded into the continuous spectrum. This eigenvalue is unique in the segment [0,π2], and it is absent in the case l≠lk ε. The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main difficulty is caused by the rather specific shape of the perturbed wall ∂Πl ε, namely a narrow rectangular bulge with corner points, and we discuss available generalizations for other piecewise smooth boundaries.
File in questo prodotto:
File Dimensione Formato  
CaDuNa-2018-JMPA ModificatoNew.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 481.55 kB
Formato Adobe PDF
481.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4716266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact