Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. They are in the first line in facing cellular energy requirements in stress conditions, such as in response to xenobiotic exposure. Recently, a novel regulatory key role of microRNAs (miRNAs) in important signaling pathways in mitochondria has been proposed. Consequently, alteration in miRNAs expression by xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of this review is to show the highlights about mitochondria-associated miRNAs in cellular processes exposed to xenobiotic stress in different cell types involved in detoxification processes or sensitive to environmental hazards in marine sentinel organisms and mammals.

Modulation of mitochondrial functions by xenobiotic-induced microRNA: From environmental sentinel organisms to mammals

Burgos-Aceves, Mario Alberto;Paolella, Gaetana;Lepretti, Marilena;Lionetti, Lillà
2018-01-01

Abstract

Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. They are in the first line in facing cellular energy requirements in stress conditions, such as in response to xenobiotic exposure. Recently, a novel regulatory key role of microRNAs (miRNAs) in important signaling pathways in mitochondria has been proposed. Consequently, alteration in miRNAs expression by xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of this review is to show the highlights about mitochondria-associated miRNAs in cellular processes exposed to xenobiotic stress in different cell types involved in detoxification processes or sensitive to environmental hazards in marine sentinel organisms and mammals.
File in questo prodotto:
File Dimensione Formato  
STOTEN-D-18-04898 for publication-ready _watermark.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 311.39 kB
Formato Adobe PDF
311.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4718543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 77
social impact