Following recent advances in network infrastructure, cloud computing, and embedded systems, fascinating work is underway exploring the utility of demand response in increasing grid stability while permitting high penetration of intermittent renewable distributed generation resources. Although works have demonstrated diverse theoretical advantages of demand response programs, little real-world data are available and utilities generally remain reticent in moving forward with large-scale implementation due to risks inherent to any modification of the power system. Deciding that the next pertinent step in bringing demand response from theory to technology is developing an Internet-of-things hardware-in-the-loop simulation power system integrated device capable of empirically testing the theoretical mechanisms, this work presents an architecture testbed for providing demand response (telemetric monitoring and actuation of loads), which is real node in a power system simulation where virtual node's parameters derive real node data. We test a demand response algorithm, which provides frequency regulation services.

Internet-of-Things Hardware-in-the-Loop Simulation Architecture for Providing Frequency Regulation with Demand Response

Siano, Pierluigi;
2018-01-01

Abstract

Following recent advances in network infrastructure, cloud computing, and embedded systems, fascinating work is underway exploring the utility of demand response in increasing grid stability while permitting high penetration of intermittent renewable distributed generation resources. Although works have demonstrated diverse theoretical advantages of demand response programs, little real-world data are available and utilities generally remain reticent in moving forward with large-scale implementation due to risks inherent to any modification of the power system. Deciding that the next pertinent step in bringing demand response from theory to technology is developing an Internet-of-things hardware-in-the-loop simulation power system integrated device capable of empirically testing the theoretical mechanisms, this work presents an architecture testbed for providing demand response (telemetric monitoring and actuation of loads), which is real node in a power system simulation where virtual node's parameters derive real node data. We test a demand response algorithm, which provides frequency regulation services.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4720033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact