The properties of alginate/gelatin (A/G) interpenetrated polymer networks have been studied by dissipative particle dynamics (DPD) simulations. The simulation predicted some mechanical properties of A/G blends with different A/G ratios in water. Results from new synthesized aerogels have been used to validate the range of exploitation of the DPD simulations. Good mechanical and morphological properties of the aerogels have been achieved from aerogels derived from hydrogels with water content higher than 95%. DPD simulation results indicated that an optimal shear viscosity is reached for a composition of 95% water, 3% alginate and 2% gelatin. Furthermore, this approach can be of great interest in designing novel materials.
Dissipative Particle Dynamics Study of Alginate/Gelatin Aerogels Obtained by Supercritical Drying
Concilio, Simona;Piotto, Stefano;Sessa, Lucia;Baldino, Lucia;Cardea, Stefano;Reverchon, Ernesto
2018-01-01
Abstract
The properties of alginate/gelatin (A/G) interpenetrated polymer networks have been studied by dissipative particle dynamics (DPD) simulations. The simulation predicted some mechanical properties of A/G blends with different A/G ratios in water. Results from new synthesized aerogels have been used to validate the range of exploitation of the DPD simulations. Good mechanical and morphological properties of the aerogels have been achieved from aerogels derived from hydrogels with water content higher than 95%. DPD simulation results indicated that an optimal shear viscosity is reached for a composition of 95% water, 3% alginate and 2% gelatin. Furthermore, this approach can be of great interest in designing novel materials.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.